Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes.

نویسندگان

  • A Carpentier
  • S D Mittelman
  • R N Bergman
  • A Giacca
  • G F Lewis
چکیده

Our recent in vivo observations in healthy nonobese humans have demonstrated that prolonged elevation of plasma free fatty acids (FFAs) results in diminished glucose-stimulated insulin secretion (GSIS) when the FFA-mediated decrease in insulin sensitivity is taken into account. In the present study, we investigated whether obese individuals and patients with type 2 diabetes are more sensitive than healthy control subjects to the inhibitory effect of prolonged elevation of plasma FFAs on GSIS. In seven patients with type 2 diabetes and seven healthy nondiabetic obese individuals, we assessed GSIS with a programmed graded intravenous glucose infusion on two occasions, 6-8 weeks apart, with and without a prior 48-h infusion of heparin and Intralipid, which was designed to raise plasma FFA concentration approximately twofold over basal. The nondiabetic obese subjects had a significant 21% decrease in GSIS (P = 0.0008) with the heparin and Intralipid infusion, associated with a decrease in whole body insulin clearance. The impairment in GSIS was evident at low (<11 mmol/l) but not at higher plasma glucose concentrations. In contrast, the patients with type 2 diabetes had a slight increase in GSIS (P = 0.027) and no change in insulin clearance, although there was marked interindividual variability in response. Plasma proinsulin concentrations measured in a subset of subjects were not altered in either group by the infusion of heparin and Intralipid. In summary, 1) obese nondiabetic individuals are susceptible to a desensitization of GSIS with heparin and Intralipid infusion, and 2) patients with type 2 diabetes do not demonstrate such susceptibility when FFAs are elevated approximately twofold above basal with heparin and Intralipid. Our results suggest that FFAs could play an important role in the development of beta-cell failure in obese individuals who are at risk for developing type 2 diabetes. They do not, however, seem to further deteriorate the beta-cell function of patients who already have established type 2 diabetes and may even result in a slight increase in GSIS in this latter group.

منابع مشابه

The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overwe...

متن کامل

Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies.

The phenomenon of lipid-induced pancreatic β-cell dysfunction ("lipotoxicity") has been very well documented in numerous in vitro experimental systems and has become widely accepted. In vivo demonstration of β-cell lipotoxicity, on the other hand, has not been consistently demonstrated, and there remains a lack of consensus regarding the in vivo effects of chronically elevated free fatty acids ...

متن کامل

Short-term oral α-lipoic acid does not prevent lipid-induced dysregulation of glucose homeostasis in obese and overweight nondiabetic men.

Prolonged elevation of plasma free fatty acids (FFAs) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. The mechanisms whereby lipid induces these impairments are not fully defined but may involve oxidative stress, inflammation, and endoplasmic reticulum stress. α-Lipoic acid (ALA), a commonly used health supplement with antioxidant, anti-inflammatory, a...

متن کامل

Pancreatic fat content and beta-cell function in men with and without type 2 diabetes.

OBJECTIVE Insulin resistance, associated with increased lipolysis, results in a high exposure of nonadipose tissue to lipids. Experimental data indicate that fatty infiltration of pancreatic islets may also contribute to beta-cell dysfunction, but whether this occurs in humans in vivo is unknown. RESEARCH DESIGN AND METHODS Using proton magnetic resonance spectroscopy and oral glucose toleran...

متن کامل

Impact of Magnesium Deficiency on Pancreatic β-Cell Function in Type 2 Diabetic Nigerians

Objective: Pancreatic b-cell dysfunction is described to be present at the diagnosis of type 2 diabetes mellitus (T2DM) and progressively deteriorated with disease duration. However, its progression is variable and potentially influenced by several factors. The Magnesium (Mg) deficiency mediates insulin resistance but reports regarding its role in pancreatic β-cell dysfunction are scarce and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Diabetes

دوره 49 3  شماره 

صفحات  -

تاریخ انتشار 2000